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ABSTRACT

We have recently provided details of an apparatus and computer programs
to implement the factor-jump method of thermogravimetry. This paper describes
the refinement of the technique to the present status of quasi-automatic routine
operation. The procedure was worked out using samples of polymethyl-methacrylate,
polystyrene and polyurethane polymers. The activation energies obtained are
measured to 0.2 kcal mole™! in favorable cases. This is adequate for diagnosis of
changes in mechanism but may sometimes be inadequate for scaling temperature
accelerated tests to room temperature.

INTRODUCTION

Following the proposal! of the factor-jump method of thermogravimetry for
the determination of activation energies, we designed and assembled the computer-
driven apparatus described in refs. 2 and 3. Simultaneously, we prepared the computer
program described in refs. 4 and 5. The programs were initially tested on simulated
experiments using the procedure described in refs. 4 and 5. In this way, the logic and
algorithms were shown to be sound and apparently bug-free in idealized situations of
no systematic error and no long-term instrumental drift (the magnitudes in the
working apparatus were unknown at the time).

The presence of systematic error and long-term drift in the instrument enforced
pilot studies, including work described here. To describe the procedure found appro-
priate, this publication uses a description of an experiment in which polystyrene was
oxidized. The procedure applies to both studies of thermal degradation (in vacuo
and in N,) and oxidation (in N,/O, mixtures) of polymers. Some considerations on
the minimum rate of weight loss and on the precision needed in the procedurc are
given.

The computerized thermogravimetry apparatus and the controlling programs
have already been described®~ ® in a general fashion. The technique used here consists
of subjecting the sample to a series of temperature plateaus and extrapolating the
rates of weight loss, r, and temperatures, 7, in adjacent plateaus to give values r,, r,,
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T,, and T, at a given extent of reaction C,. These values are used to calculate the
activation energy, £;, at extent of reaction C;, from the Arrhenius equation as
quoted (eqn. (1)) in ref. 5 :

E; = Rin(r;frs)/(1T; — 1T)
= R[In(rli[FZi)](TliTZi)/(Tli — T33) ' ¢

SAMPLE CONSIDERATIONS

* In early runs, a coal-scuttle shaped platinum bucket with a flat bottom (10 x 4
min) was looped directly over the end of the quartz balance arm. The thermocouple
was positioned upstream about 0.5 mm from the bucket and ~ 1 mm above the level
of the bucket bottom. The sample position was centered in the furnace along the
furnace axis by making the reaction manifold the appropriate size. It was centered
radiaily in the furnace by using a kinked quartz arm in the balance. More recently,
we have used a quartz spoon on the end of a quartz rod, with the thermocouple

centered under the spoon.

‘ Typically, 15-30 mg of sample are spread evenly over the floor of the bucket or
in the spoon. (When lumps of sample retain their shape during the early stages and
give undue importance to diffusion processes, powdered samples must be used. This
was the case for PMMA). Samples are usually preconditioned under program control
" for 10-45 min at about 15°C below the temperature of the first plateau, with the
actual time being chosen so that (a) the balance mechanism settles down after any
recent disturbance such as putting the sample in, (b) any anomalous material
such as solvent or monomer is volatilized, and (c) the sample attains a modest rate of
weight loss via the degradative process of interest. '

DATA COLLECTION

The requirements of data coliection are:

(1) plateaus should be fairly short so that the weight-time curve can be fitted
well with a second degree polynomial; '

(ii) the behavior of the sample should become steady under a new set of
conditions before data collection is started, and

(iii) the program should use the sample “‘equilibration® time to fit polynomials
to the weight and factor (temperature, pressure, gas flows) trends with time, Thus, a
compromise must be struck between, on the one hand, many closely spaced data and
long computational “‘time-outs” and, on the other hand, few widely spaced data with
imprecise but rapid polynomial fits. :

Those sources of imprecision in the measured activation energy where the
operator has some control or choice are: (a) the time between platcaus, (b) the
imprecisions in the various voltages characterizing the levels of the factors, and (c) the
‘contributions of r, &,, T, &y, r /r, and AT to ¢(E;) through eqn. (3) of ref. 5, ie.
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The time between plateaus depends on the apparatus and sample, which should
“equilibrate” to new conditions as quickly as possible so that long extrapolations to
a common value of C are not needed. It is also a function of the computer program,
in that the size of the overlays and speed of execution of the program steps govern the
time the computer is involved in its own operations rather than serving the needs of the-
thermogravimetry apparatus. Finally, the time between plateaus is a function of the
hardware, where the choice of mass storage medium governs the speed of reading
information or programs into the computer and the choice of multiplication and
division by hard-wired devices or software programming governs the computational
speed. For a given apparatus, the main influence the operator exerts on the inter-
plateau time is to choose an appropriate number of data points to measure and fit;
15-25 points seem to be appropriate. ,

The imprecisions in the signal voltages can be reduced by averaging scveral
readings together. In the ‘“filtered input” mode on the digital voltmeter, each reading
takes ~ 1/2 sec. Three readings per average seems ideal to provide an estimate of the
standard deviation.

The quantities involved in the variance, o2, of the activation energy, £;, are
various logs and powers, e.g., In(ri/r; 1), T% [TuiT2:/T1;i — T,;)]? and so on (see
egn. (2)). The values of r depend on T in the form expressed in the Arrhenius equation. .
They depend in a generally unknown multiplicative fashion on the sample weight
since a larger sample loses weight faster. Useful values of T; and T;,, depend on
obtaining a sensible ratio for r;/r;+, on ensuring the rates observed are between the
user-chosen minimum and maximum values, on the minimum number of E; values
desired before all the sample is consumed, and on the contribution of AT=T; ~ T4+,
to og,. The main term is AT. AT values > 10°C generally give reasonably small
(0.3-0.5 kcal mole™") contributions to ¢, depending on the tuning of the temperature
controller. Table 1 shows the effect of £, AT and T on the ratio of rates as calculated
from eqn. (1). For large activation energies (> S0 kcal mole™ '), AT = 8 seems

‘appropriate. The values of g,; and or; depend partly on the number of readings -
averaged together to give r; and T; and partly on the apparatus, especially on the

TABLE 1

RATIOS IN RATES FOR VARIOUS VALUES OF E, A7 AND 7 IN EQN. 1)

ATIT(°C) E(kcal mele1)

' 15 20 30 40 50 60
10/250 1.32 1.44 1.73 2.08 2.49 2.99
15/250 1.51 1.73 2.28 299 3.94 5.18
10/350 1.21 1.29 - 1.47 1.67 1.90 217

15/350 1.34 1.47 1.79 2.17 2.63 3.19
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TABLE 2

SPECIFICATION OF EXPERIMENTAY CONDITIONS AND PROCEDURES

PS in air 7/13/77 24mg sample

Type E therinocouple = NI-CR/CU-NI, expressions good from —0.05 to 4+0.04, 0 to 400 degrees C.

(Table A5.2.3, P.307 NBS Monograph 125, 1974)

Parameters initialised as follows:

NTHCP. = E TSCALE = 243.73 SKIP — 30. ‘
FACTQORS == 1 2 0 0 0 -0 0 0
FACFUN = a 0 -0 a 0 0 0 0
DERIVS = 1 0 0 0 0 0 0 0
- INPUTS = 0 1 2 3 4 5 6 7
SCALES = 1.000 1.000 0.010 1.000 1.0600 1.0600 1.000 1.000
NRANGE = 3 3 5 5 5 5 5 5
NREADS = 3 3 3 3 3 3 3 3
NTERMS = 2 1 -0 0 0 0 0 0
CHI TEST =  3000. 1500. 1000.  1000. 1000. 1000, 1000, 1000.
PTIMES = 3000 300.0 300.0 300.0 300.0 300.0 300.0 300.0
PRECF = 100.00 100.00 100.00 100.00 100.00 106000 100.00 100.00
PRECR = 30.00 30.00 30.00 30.00 30,00 30.00 30.00 30.00
NFACTS = 2 NRATES = 1 TIMLIM = 500. BAD PTS = 8 EQUIL == 200.
CHECKS = 75END SIG = 3.0 RATMIN = 10.0 RATMAX = 35.0 TITUMP = 30.0 :
TCTOD = 0.17023E—-01* —0.22097E—06 0.54809E—11 —0.57670E—16
10 UNITS = 5 5 3 7 8 1 6
POLNOM EXP = 1 2 3 4 5

PRECISION IN E ACT = 25.00

FACTOR LEVELS AND CHANGES FOLLOW:
1 251.060 1.000 )

2 300.000 0.000

3 385.000 0.000

4 105.000 0.000

DESIGN MATRIX FOLLOWS

1 —11.000 0.000  0.000 0.600

2 15.000 0.000 0.000 0.600
Steadiness check == 1 where 0 = no, 1 = yes
Input filter to DVM = 1 where 0 = no, 1 = yes
Read other expts = 0 where 0 = no, 1 == yes
Bias voltages and sigmas for factor inputs

Factor Voltage Sigma

1 0.0000000E +-00 0.9999999E—(09

2 (0.0000000E + 00 0.9999999E —09
Initial and final weights are: 362000. — 160000,

Bake time in seconds is 2000.

Bake temperature in degrees Celsius is 220.
Bake pressure in mm HG is 800,

Flow of N2 in sce/min is 385.

Flow of O2 in sce/min is 105.

Facset
220.0 1
14 D 3632:

* Read as 0.17023 3 10-1
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tuning of the temperature controller. g,; dependson r in that, even though the sample
weight is changing at rate r, it is assumed to be constant for some small window of
time during which several sample weight measurements are taken and averaged. o,;
also depends on the variability in T, the effect of which is transmitted to the rate of
weight loss in the form given by the Arrhenius equation. The duration of each
temperature plateau depends on how many data are needed to supply the precision
- required in the extrapolations of r and on the number of E; values desired. Longer
plateaus mean fewer E; determinations for a given sample size.

‘The operating parameters usually used are given in the first half of Table 2. To
some extent, many of their values were forced on us. Trial runs and examination of
problems in “‘real” runs suggested that the sample/apparatus combination needs ~
200 sec to equilibrate. This is given as the variable EQUIL in Table 2. This time
includes equilibration of factors such as temperature control and balance-arm expan-
sion as well as response of the sample to the new conditions. The current speed of the
combination of interface, computer, disc and printer makes the length of the tempera-
ture and sample weight reading cycle ~ 33 sec when the record of the experiment is
printed and ~ 27 sec when it is written on a flexible diskette. This means the variable -
SKIP must be at least ~ 30 sec. A plateau length of TIMLIM = 500 sec gives 14-17

'pairs of temperature/weight readings per plateau, depending on whether the progress
of the experiment is logged on the printer or on a disc. This number of points allows
all curve-fitting and extrapolations to be done and an activation energy to be calculated
in [ittle Iess than 200 sec, i.e., during the sample re-equilibration time.

The thermocouple in the apparatus is type-E, which gives a large (~ 80 xV/°C)
change of e.m.f. with temperature in the range of interest and has a reasonably linear
response. Type-K is not particularly suitable for our application; it has roughly half
the temperature coefficient of type-E and suffers from non-linearity because of an
order—disorder transition (see ref. 6 and refs. thercin). The variable TSCALE scales
the thermocouple e.m.f. calculated in the program to a voltage to be output from one
of the digital-to-analog converters in the apparatus. TSCALE is an instrumental
constant and depends on the amount the output voltage (maximum = 10 V d.c. in our
application) is divided down to produce a thermocouple e.m.f.-like voltage (maximum
~ 40 mV here).

The line labeled FACTORS in Table 2 is essentially a heading for the next 11
lines of the table. Thus, the details for factor 1 are coded under the ““1”’ in the FAC-
TOR line and those for factor 2 are under the *“2” in the FACTOR line. FACFUN
describes whether the voltage reading for a factor is to be transformed to another
function or not. The latter is the case here. The transformation possibilities are the
logarithm to the base e, the square, and the reciprocal. DERIVS shows by non-zero
values which factors are also to be computed as derivatives with respect to time.

INPUTS provides the links between the factors and the voltages which are
available at the analog scanner in the interface beiween the thermogravimetry
apparatus and the computer. SCALE carries the scale factors to be applied to the
input voltages to transform them to physical units. Column 3 is usually for the pressure;
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the voltage representing it will be multiplied by 0.01 to transform the readings to
millimeters of mercury. NRANGE denoted the range on the digital voltmeter that
should be used in reading each of the various voltages. This range is changed by the
program as needed so that precision in the readings will be maximized. NREADS is
the number of readings to be averaged together to provide estimates of the mean and
standard deviation of a datum. An unusually large estimate of the standard deviation
provides some indication of catastrophe. The estimates of the standard deviation of
the sample weight are used to test for “end-of-sample’”, which is defined as occurring
when adjacent weight readings to not differ by more than END SIG (= 3 here)
pooled estimated standard deviations.

NTERMS is the number of terms to use in the polynomial describing the trend
with time. Generally this number should be as small as possible. We use a second-
degree polynomial for the weight-time curve and a first-degree polynomial for the
temperature-time curve. Pressure and flow rates are not usually monitored by the
program but could be and would then be represented by zero-degree polynomials.
CHI TEST gives the cutoff value for the y2 statistic as calculated from the least-
squares fit of the chosen degree of polynomial to the 5 latest averaged readings.
Although estimates of the standard deviations are available, they are not worth
using in a weighted least-squares fit. Each datum therefore has unit weight in the
polynomial fits and in the calculations of y2. Values of z* greater than the cutoff
cause data collection to begin again: data accumulated for that particular set of
conditions (plateau) are thrown away. If more than BAD PTS (= 8 here) have been
thrown away during this plateau, the CHI TEST values are updated. More than 2
updates per plateau cause an error reset, when all data for that plateau are discarded
and the next programmed set of conditions is imposed. '

PTIME is used mainly in apparatus check out, and is the equilibration time
allowed for each factor. This has been more or less replaced by EQUIL at the moment
but the PTIME option has been retained until more experience shows whether or not
it is useful. PRECF and PRECR are the target precisions, fla(f), in the factors and
rates, respectively. They are used in deciding whether more data are needed under a
particular set of conditions. '

In our example, the data collection will persist for 500 sec (TIMLIM) with data
being measured every 30 sec (SKIP). This provides 17 points per plateau. A check of
the curfently attained precision is made every CHECK data points; here CHECK is
set equal to 75, which, since it can never be attained before the allowed time runs out,
is a device to remove it from consideration during this experiment. If CHECK were in
the range 3-5 then frequent checks of the attained precision would be made. In
practice, both flexible diskettes and the computer are too slow for this to be a realistic
approach at the moment and frequent time-outs for reading in new overlays and
fitting polynomials, etc., would result in unacceptable Ioss of data. We believe that
impressive improvements will be made when rigid disks and hard-wired integer
~multiply-divide are added. Floating point hard-wired arithmetic is desirable but is
perhaps too expensive.
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RATMIN and RATMAX in Table 2 are the minimum and maximum allowable
rates of weight loss, as determined directly from the electrobalance readings in uV
sec” . Rates outside these limits cause the temperature to be reset by TIUMP degrees
Celsius. The choice of minimum rate of weight loss involves yet another compromise.
The rate of long-term drift in the electrobalance was found to be < 0.1 ;V sec™ ! under
steady conditions at room temperature. The balance drift was difficult to estimate
under conditions of changing weight loss, but observations during the degradation of
the last few percent of sample and in runs conducted with an empty sample bucket
suggested that the apparent drift of the instrument under dynamic conditions may,
after extrapolation, sometimes be as high as 0.6 uV sec™ ! (= 8,) but was often < 0.1
1V sec™ . The effect of slight changes in temperature during the temperature plateaus
swamped out the other effects and essentially provided an error in the calculated rate
of weight loss. Thus the quantity calculated from the polynomial fit to the observed
sample weight is (#" 4 8,), where r’ is the “*real” rate of weight loss and 6, is an error
arising from both the balance and the rest of the experiment. Given that the activation
energy may be calculated from the Arrhenius equation recast in the form

= RLT ('_1)
T, - T, Fa

RTlTl h’l (rl -+ 5..) (3)

Tl - TZ r:‘! + 51'

the minimum value of r to give > 97 9% precision in £ may be estimated by trial to be
~ 12.5 pV sec™!, assuming, for example, 5, = 0.6 uV sec™ !, 7', = T, = 250°C,
AT = 15°C, r, = 3¢, and the error &, is always applied additively. This concept will
be examined in more detail later. The above value (12.5) for the minimum value of r
generally gave reasonable results, whereas values < 10 sometimes gave results which
appeared from the context of neighboring activation energies to be spurious.

The line TC to D contains the coefficients, a;, required in the polynomial to
convert a thermocouple e.m.f., f, to temperature, 7, in °C according to the equation

T = Z aiti.,

- The Input/Output UNITS for conversation with the operator, the printer, the disc
files etc., are given on the next line. The following line, POLNOM EXP, contains the
coefficients for the polynomials used in fitting factor trends with time. The last line,
PRECISION IN E ACT, contains the target precision, Efo(E), in the activation
eneigy E. :
After the operating parameters have been chosen (the procedure of changing
the parameters Is not shown in Table 2), the sample treatment outlined in the second
half of Table 2 is programmed. The starting values are entered on the computer
console and are output under FACTOR LEVELS AND CHANGES FOLLOW. The
changes to be made to the starting values are given under DESIGN MATRIX
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FOLLOWS. The function of the design matnx in controlling the course of the
experiment is given in detail in ref. 5.

The bottom part of Table 2 records the choices made for steadiness tests (via

"2 values) [yes], whether or not filtered voltages are to be input to the digital volt-
meter [yes], and whether or not there is to be simultaneous logging of data from other
experiments -[no’]. The experimenter has chosen to specify zero for the bias voltages
on the input lines and essentially zero for the associated standard deviations. (These
voltages could have been measured by the program but have previously been determin-
ed to be very small). The initial and final sample weights are entered in microvolts
(20 xV = 1 pg) and the bake-out parameters are selected. Control then passes to the
program, which will subject the sample to the prescribed bake-out conditions before

collecting data. -

EXAMPLE OF DATA.

Table 3 contains weight and temperature data obtained during a temperature
plateau in the oxidation of a sample of polystyrene. The first column in Table 3 is the
ordinal number of the point; each point consists of a measurement of those factors
previously flagged as pertinent and each factor (enumerated under the F column)
occupies a separate line. Thus, the column F denotes the factor number and the
column I denotes the input number on the analog scanner (see ref. 3) for that factor.
The average of several readings is given in microvolts under the heading READING

_and the estimate of the associated standard deviation appears under the heating
SIGMA. RD gives the numbers of individual readings used in obtaining the average
and the estimate of the standard deviation. The individual readings are taken as
quickly as possible (typically every 1/2 sec) but the estimate obtained for the standard
deviation is only a lower bound to the actual value because there is generally some slow
oscillation taking place in the temperature control system. This temperature oscillation
affects both the temperature and the weight and has a period of ~ 100 sec.

The remaining columns in Table 3 are the elapsed time in seconds since the end
of sample conditioning (i.e., the beginning of the experiment proper), the number of
points discarded in the current plateau because of instability, the value of x? for the
five most recent measurements including the one under consideration, and the upper
limit allowed for these ¥ values. The plateau begins with pomt number — 3 so that the
program can use 5 sets of readings to provide point 1 with a 32 value. Points —3 to 0
are used only to calculate ¥ values, are collected as quickly as p0551ble and are later
discarded.

In the example shown, the sample weight is factor 1, on input 0, and the sample
temperature (type-E thermocouple reading) is factor 2 on input 1. The sample weight
is read to about 20 pV (actually it was changing at ~ 25 uV sec™ ') and the tempera-
ture is read to 1 or 2 uV. The cutoff values of ¥, 3000 and 1500, are taken over 5
readings and, since the fit is not weighted by 1/02, represents Z(y;o — ¥ic)*. This
allows an average misfit between observed and calculated values of \/x2/5 or /3000/5
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WEIGHT AND TEMPERATURE DATA OBTAINED DURING A TEMPERATURE PLATEAU {READINGS ARE IN ,llV)

Measurement for plateau number 2

No.
—3

‘ UL
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READING

0.1959233E 4 06*
0.1634967E4-05
0.1956367E4-06
0.1637067E+-05
0.1953600E4-06
0.1642267TE+05
0.1950333E-106
0.1640767E-+05
0.1847033E+06
0.1636233E 05
0.1938267E--06
0.1640800E+05
0.1928467E4-06
0.1637767E+05
0.1915233E+06
0.1638600E 05
0.1909633E - 06
0.1636333E4-05
0.1900633E4-06
0.1638667E 405
0.1891367E+406
0.1637767E4-05
0.1882467E+06
0.1641733E+05
0.1873467E+-06
0.1636300E 105
0.1864733E-+06
0.1636233E+035
0.1855867E1-06
0.1642200E4-05
0.1846267E+-06
0.1635333E-+05
0.1837367E4-06
0.1636300E+05
0.1828267E--06
0.1639600E +-05

SIGMA

0.1452967E4-02
0.333334GE+-G0
0.1763834E14-02
0,3480103E+-01
0.2081664E4-02
0.8819175E+-00
0.2027586E+02
0.1452965E 401
0.2027586E3-02
0.2027586E+401
0.2333333E+02
0.5773508E4-00
0.2333333E-+-02
0.6666676E 100
0.2027586E+-02

. 0.1732049E+-01

0.2027586E4-02
0.3333346E+-00
0.2027586E+4-02
0.3333346E+-00
0.1763834E4-02
0.8819175E4-00
0.2333333E-+02
0.2333334E4-0!1
0.1763834E 102
0.5773508E 400
0.2027586E+402
0.8812175E-+00
0.1763834E+02
0.2645751E+01
0.1763834E+02
0.3333346E 0D
0.1763834E4-02
0.2309403E+01
0.1763834E4-02
0.5773508E+00

RD TIMFE

umuuwuwwuuwwuuwuumwuumuwuuuwwuuwuu‘mu

982.

982,

993.

9913,
1005,
1005,
1017,
1017.
1028.
1028.
1064,
1064,
1160.
1100,
1136.
1136.
1174,
1174.
1210.
1210.
1245.
1245.
1280.
1280.
1316.
1316.

1350,

1350.
1386.
1386,
1422,
1422,
1438.
1458.
1495,
1495,

BAD RCHI

00
0.0
0.0
0.0
0.0
0.0
0.0
287.2
1156.6
1036.7
886.7
1300.6
6779
1053.1
509.4
990.2
457.1
126.1
2427
247.0
118.0
i97.3
330.6
3164
559.1
1856
509.2
94.3
10190
330.3
12223
514.6
995.3
614.7
1107.5

COoOOCO0OOCOCOO0OOOOoOCOORT 0000000000000 C S

0.0 -

TESTCH

3000.0
1500.0
3000.0
1500.0
3000.0

- 1500.0

3000.0
1500.0
3000.0
15300.0
30600.0
1500.0
3¢00.0
1500.0
36000
1500.0
3000.0
1500.0
3000.0
1560.0
3000.0
1500.0
3000.0
1500.0
30000
1500.0
3000.0
1500.0
3000.0
1500.0
3000.0
1500.0
3000.0
15000
30000
1500.0

* Read as 0.1959233 X 108,

~ 25 uV and .f1500/5 ~ 17 uV, respectively, in sample weight and temperature.
These are generous limits and will only be exceeded in cases where some catastrophy
in the data collection has made the polynomial fit unacceptably poor.

POLYNOMIAL FITS TO THE DATA

Table 4 shows the results of fitting a second-degree polynomial to the weight

data in Table 3. First, the total weight loss (in uV where 20 uV corresponds to 1 ug)
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TABLE 4

FIT OF SECOND-DEGREE POLYNOMIAL TO WEIGHT DATA IN TABLE 3

Checks of precision for plateau 2

Weight [oss for this plateau = 0.119E+-05 microvolts with average rate of 0.254E-}-02 microvolts

per second
TIME P YFIT SIGMA P P-YFIT (P-YFIT)/ DEL P
SIGP

—233.5 0.194703E+06 0.194719E+-06 0.203E4-02 —0.161E4+-02 —0.795E4+00 0.000E--00

—197.5 0.193827E+06 0.193790E+06 0.233E+02 0.366E+02 0.i57E+01 —0.877E+03

—161.5 0.192847E+-06 0.192863E+06 0.233E+4+02 —O0.161E-+02 —O0.683E4+00 —O0.980E--03

—125.5 0.191923E+4-06 0.191937E-+06 0.203E+02 —0.141E+02 —0.694E4-00 —0.923E-1-03
—87.5 0.190963E-+06 0.190963E+06 0.203E-+02 0.750E+00 0.370E-1-01 —0.960E-1-03
—51.5 0.190063E--06 0.19004iE+06 0.203E-4-02 . 0.223E4+-02 0.110E4+01 —0.900E4-03
—16.5 0.189137E4-06 0.189147E+4+06 0.I76E+02 —0.102E+02 —0.581E4-00 —0.927E+03
18.5 O.188247E-+06 0.188235E-+06 0.233E402 —O0806E4+0F —0.346E4+00 —0.B50E--03
54.5 0.187347E-+06 0.18733%9E--06 0.176E-1+02 0.775E+-01 0.439E1+00 -—-0.908E-+-03
88.5 0.186473E-+4-06 0.I85476E-1-06 0.203E-+02 —0.244E-101 —0.120E-+00 —0.873E+03
124.5 0.185587E+06 0.185564E-+-06 0.176E-}02 0.231E+02 0.131E+01 —0.887E+-03°
160.5 0.184627E+06 0.184653E+06 0.176E+02 —0.267E4-02 —-0.151E+01 —0.930E-1+03
196.5 0.183737E-+06 0.183745E-4+06 0.176E4-02 —0.837E4+01 —0.475E+00 —0.890E+4-03
233.5 G.I82827F+4-06 0.182814E-4-06 0.176E4-02 0.131E4-02 0.744E+00 —0910E+03

Polynomial coefficients for FACTOR 1

COEFF SIGMA

0.18872612E--06 0.79009933E+-01

—0.25494400E 402 0.36509778E—01

0.74033369E—03 0.28282567E—03

Reduced CHI SQUARE = 388.52

FTEST = 0.2IE+06
RMUL = 0.10E+01
R(1) = —0.1DE+01
R2) = (.10E—€&1

and the average rate of weight loss encompassed by the data are given. This latter
quantity is provided as an inifial indication of whether or not the instrumentatl effects
(< 0.6 uV sec™ ') have been overwhelmed. The mid-time of the individual readings is
subtracted from the times of the individual readings to distribute estimated errors in
extrapolated quantities equally at both ends of the plateau. Note that the times do not
have to be evenly spaced.

The quantities P and YFIT in Table 4 are, respectively, the observed weight
values and the guantities calculated from the fitted polynomial. The degree of the
polynomial was specified in the initialization parameters. SIGMA P is the estimated
standard deviation in P and, as was mentioned earlier, is usually too small to be
realistic because the oscillation in the temperature is much longer than the 1 sec or so
required to take 3 readings of the thermocouple voltage. P-YFIT provides a check of
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the appropriateness of the polynomial fit, partly from the magnitudes of the quantities
and partly from their signs. Large groups of like signs are a sure indication of system-
atic misfit.

The quantile (P-YFIT)/SIGP provides a rough indication of the true size of
SIGP since for normally distributed errors the absolute values of these quantiles are
expected on the average to be less than 0.69 for 759, of the cases and less than 2.1 for
959, of the cases (these values were taken from a r-distribution with 15 degrees of
freedom). The larger the period and size of the oscillation in the measured value of
the quantity being fitted, the larger these quantiles will be in absolute magnitude,
because the esttmated standard deviation will then not accurately reflect the actual
excursions. :

The final quantity in Table 4, DEL P, is the arithmetic difference between
adjacent values of P. DEL P provides an indication of the smoothness of the data and
of the equilibration of the sample. It isa crude estimate of the first derivative with
respect to time and in the case of the sample weight can be compared with the extra-
polated values of the rate of weight loss provided by the program.

At the bottom of Table 4, we find the coefficients of the polynomial P = 2 -
bt -+ cr?, with estimates of their standard deviations. The variable r here is the time

TABLE 5.

FIT OF FIRST-DEGREE POLYNOMIAL TO TEMPERATURE DATA IN TABLE 3

. TIME

Polynomial coefficients for FACTOR 2

P YFIT SIGMA P P-YFIT (P-YEIT)] DEL P

. SIGP
—233.5 0.163623E405 0.163823E-+-05 0.203E+01 —0.200E4+02 --0987E4+01 0.000E4-00
- —197.5 0.163080E+05 0.163822E4+05 0.577E+00 0.258E+02 0.446E402 0.457E102
—161.5 0.163777E+05 0.16382]1E+4-05 0.667E1+00 —0.447E401 —0.,670E4+01 --0.303E1-02
—125.5 0.163860E+05 0.163820E+4-05 0.173E-+01  0.396E--01 0.229E-+0F O0.833E--01
—B7.5 0.163633E+05 0.163819E-+05 0.333E+00 —O0.186E+4+02 —0.558E4+02 —0.227FE4+02
—51.5 0.163867E4-05 0.163818E4+05 0.333E+00 04B4E+01  0.145E+02 0.233E4-02
—16.5 0.163777E+05 0.163817E-+05 0.882E-+00 ~0.406E401 —0461E40I —0.900E401
18.5 0.164173E4-05 0.163816E1+05 0.233E+01  0.357E+02  0.453E+02 0.397E4-02
545 0.163680E-+05 0.163815E4-05 0.577TE+00 —0.135E4+02 --0.234E-+02 —0493E402
88.5 0.163623E+-05 0.163814E4-05 0.882E4+00 —0.191E-+02 —0.217E4+02 —0.567E+81
‘124.5 0.164220E--05 0.163%13E-L05 0.265E+01 0407E+02 0.134E4+02  0,597E~+02
160.5 0.163533E+-05 0.163812E+405 0.333E400 —0.279E--02 -—0.837E+02 —0.687E402
196.5 0.163630E4-05 0.163811E+4-05 0.231E+-01 —0.181E+02 —0736E+01  0.967E-+01
2335 0.163960E+05 0.163810E4-05 0.577E4+00  0.150E402 0.259E+02 0,330E--02

COEFF SIGMA
0.§6381688E-1+-05 0.61206369E +01

—0,27957903E—02  0.42418454E—01
Reduced CHI SQUARE == 524 .47 '

FTEST = 043E-—-02
RMUL = 0.19E-—-01
= —0.19E—01

R(D
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as given in the first column of Table 4. The second-degree coefficient in the example
quoted is only just significant. The quality of the fit is indicated by the quantities
reduced y2, F test, RMUL and R. See ref. 7 for a discussion of these terms.

Table 5 shows the results of fitting the temperature data during the same
plateau. This particular temperature plateau was not particularly well controlled in
that there was an oscillation < -+ 1/2°C as judged from the DEL P column. The
maximum DEL P value in Table 5 is 69 uV ~ 1°C; values of < 10 ¢V are more
typical.

EXTRAPOLATION OF POLYNOMIALS AND CALCULATION OF Ei

After the polynomials have been fitted, the temperature and rate of weight loss
must be extrapolated to a time between temperature plateaus to provide the values
T, T3, r, and r, needed in egn. (1). Table 6 shows the results of the extrapolations for
the data in Tables 3, 4 and 5. R1 in Table 6 refers to the rate of change of factor 1 (I is
the sample weight). FI and F2 refer to the extrapolated values of factors 1 and 2
(2 is the temperature). The quantities in these lines are (1) the values when the
polynomial is extrapolated backwards in time, (2) the estimate of its associated
standard deviation, (3) the value when the polynomial is extrapolated forward in
time, (4) the estimate of its associated standard deviation, (5) an estimate of the
precision X/o(X) for the values in the backward extrapolation, (6) a similar estimate

TABLE 6

EXTRAPOLATION OF POLYNOMIALS FITTED IN TABLES 4 AND 5

Extrapolation times about mid point of plateau for polynomials

- First plateau = —382, 382,

Second plateau = —381. 381.
Real times are 148. seconds on either side of 264. 732. for first platean, and 1028. 1495. for second
Extrapolated values and sigmas back and forward in time then precisions, = back, forward and
requested

* -
RI —0.261E+02  02I9E4+00  —0.249E+402  0.219E--00 115. 114. 30.
'F1 - 0.199E+06 0.442E402 0.179E4-06 0.442E+02 4496. 4055. 100.
F2 - 0.164E405 0.173E+402 0.164E-1-05 0.173E4+02 947, 947. 100.
Activation energy from =ACTIVE=
E - 6(E) T &(T) rate : &(rate)
21.414 0.651 22421 0.20 —0.1363E+02 0.1687E+00

236.54 0.23 —0.2606E--02 0.2185E+00
Contribution of rate and temperature to variance (=SIGE?)
Rate Temp

0.244E--00 0.179E+-00
Number of points used to get polynomials was 14 and 14 E values, times and sample weights so far:
1 21.414 0.651 880. 0.199058E4+06 = 31.21

* Read as —0.261 x 102,
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X/a(X) for the forward extrapolation, and (7) the lowest acceptable levels of these
precisions. Failure of the procedure to attain any of these lowest limits of precision
will cause the program to return to collect more data unless (a) the assigned measure-
ment time has been used up, or (b) any precision is worsening, as seen from the two
latest estimations made under the current set of conditions.

Extrapolated rate of weight loss and temperature values are then used in eqn.

(1) to calculate an activation energy. As in the actual output of the program, the
calculated activation energy is given in Table 6 with an estimated standard deviation,
and with the values of T, ¢(7"), r and o(r) used in the calculations. The temperatures
in Table 6 are in °C and the rates are in uV sec™!. The contribution of rates and
temperature to the estimate of the variance (¢?) of E; is given at the bottom of Table
6. The optimum is for these two qu.mtmes to be equally small. Usually the rate

contribution is the larger.

Provided that E;/o(E;) is sufficiently large, or if measurement time has run out,

the program determines statistically weighted and unweighted averages from the 10
latest E; and o(E;) values, sets a new set of conditions and restarts the data measure-
“ment process. If E;/e(E;) is too small and measurement time remains, the program
will not change the conditions but will measure more data which will be added to those

already obtained. .

Information on the running averages based on the first 9 activation energies
obtained in the oxidation of polystyrene is given in Table 7. (Both here and in the

TABLE 7

SUMMARY OF ACTIVATION ENERGY DETERMINATIONS DURING EXPERIMENT

E values, times and sample weights so far:

No £ SIG E Time Sample Wit. D.O.C.

1 21.414 0.651 880. 0.199058E-1+06 - 31.21

2 22.199 0.870 1643. 0,179461E4-06 34.97

3 20428 3.284 2557. 0.164286E+-06" 37.88 -
4 22.307 3.297 3154, 0.146498E+-06 4128

5 21.751 0.654 5459. 0.951671E4-05 51.12

] 21.293 0.755 6221. 0.698457E +05 55,97

7 21.785 0.541 6985. 0.541754E-+05 58.97

8 20,517 0.757 7751. : 0.273903E+-05 64.10

9 22.126 0.527 ’ 8311, - 0.109583E-+035 67.25

Weighted mean E is 21.646 -+ or — 0.244
Reduced CHISQ for E calculation is 0.510 (should be 1.)
Unweighted mean of sigmas is 1.259 calculated over 8, degrees of freedom

Assuming all possible sample means are normally distributed, true weighted mean lies within range
21.166 to 22.125 for 959 confidence level

- Unweighted estimate of E and unbiased estimate of SIG E are 21 535 and 0.231 wblcb gives confidence
range of 21.083 to 21,988
CHI-SQUAKRE for unweighted E i is 0.54
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' TABLE 8

SUMMARY OF INFORMATION ON ACTIVATION ENERGIES ]jETERM]NED DURING OXIDATION OF POLYSTYRENE

IN AIR

PS run of 7/13/77 in air

1 7'21.414
2 22.199
3 20428
4 22387
5 21.751
6 21.293 7
7 21785
- 8 20.517
9  22.126
10 27.387

0.651

0.370

3.284

3.297

0.654

0.755

0.541

0.757

0.527

6.069

8380,
224721

239.54

1643.
239.52

228.39

2557,
228.44

244.73

3154,
24299

232,456

5459.
236.28

251.72

6221.
251,77

240.67

6985.
240.77

255.61

7751,
255,63

244.59

8511.
244.69

259.65

9442,
259.65

249.66

020

0.23

0.23

0.20

0.28

0.84

0.50

019

0.25

0.21

0.21

0.19

0.19

0.26

0.26

0.13

0.199058E+06 31.21
—0.1363E4-02
0.199557E+06
—0.2606E +02
0.198560E +06

0.179461E+06 34.97
—0.2493E+02
0.179120E+06
—0.1537E+02
0.179803E-1 06

0.164286E+06 37.88
~—0.1536E+02
0.165742E+06
—0.2927E4-02
0.162829E 106

0.146498E+06 41.28

© —0.2686E4+02
0.146056E - 06
~0.1716E4-02
0.146899E+06

0.951671IE+05 51.12
—0.1825E4-02
0.958499E+05
—0.3434E4-02
0.944843E4-05

0.698457E-1-05 5597
—0,3163E4-02
0.693664E+05
—0.2035E+02
0.703249E+-05

0.541754E+05 58.97
—0.2006E+4-02
0.548793E +05
- —0.3650E+02
0.534716E4-05

0.273903E+05 64.10
—0.3303E+-02
0.268590E+05
—0.2178E3-02
0.279216E 05

0.109583E1-05 67.25
—0.2054E-+02
0.118188E+05
—0.3756E+-02
0.100978E 105

—0.210176E+05 73.38

0.19

0.75

—0.3222E-02
—0.223508E4-05
~-0.1965E+4-02
—0.196B44E 105

0.1697E+4-00
0.340846E-}-02
- 0.218SE+4+00
0.441681E4-02

0.2186E+0Q0
0.440618E+02
0.1582E-+-00
0.318449E +02

0.2208E-+-00

0.605093E+-02
0.2834E+4-01
0.534293E403

0.1676E4-01
0.188321E+03
0.1442E 00
0.289956E4-02

0.2032E+00
0.369988E4-02
- 0.1705E4-00
0.343245E4-02

0.1707E-+00
0.344073E1-02
0.1420E--00
0.287076E-1-02

0.1422E+-00
0.287766E+02
0.2330E+00
0.472895E--02

0.2322E-+00
0.469508E 02

0.1311E+00
0.263989E -+ 02

0.1311E--00
- 0.2639389E+-02

0.1624E-4-00
0.327030E-+-02

0.2328E+-00
0.655307E+02
- 0.2006E--01
0,391067E4-03

14

14

14

14

14

14

12

14

14

14

14

14

14

14

14

14

14
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1i 20,196 2.074 10050. —0.327945E--05 75.63
248.15 0.44 —0.2111E4+02 0.1141E4-01 :
) —0.320766E+05 0.127695E 03 5
263.48 0.23 —0.3685E4+-02 0.1773E+00
‘ —0.335124E4-03 0.357775E4-02 14
12 20.899 0.637 10813. —0.586441E-1-05 BO0.58
263.65 0.23 —0.3036E+4-02 0.1773E4-00
—0.591515E4-05 Q0.357775E+4-02 14
252.34 0.14 ) —0.1991E4-02 0.1169E+4-00
—0.581367E+05 0.235336E+02 14
13 21.542 0.467 11574. —0.728129E+05 83.30 :
252.98 0.14 —0.1714E--02 0.1169E-00
—0.722327E+05 0.235336E4+02 14
267.56 0.21 —0.2987E4-02 0.8508E--01 )
—0.733932E+05 0.171469E+4-02 14
14 21.506 0.853 12335. —0918636E+05 8695
267.79 0.21 - —QI1951E-02 0.8508E—01
—0.922093E4-05 0.171469E - 02 14
256.73 0.23 ~-0,1285E1-02 0.1381E4-00
. —0.915178E+05 0.280695E +4-02 14
15 22.395 0.898 13174. —0.100485E4-06 38.60
. 256.59 0.27 —0.7583E-+-01 . 0.1626E1-00
—0.100080E+06 0.383535E--02 14
275.58 0.32 . —D.1583E+402 0.1955E+4-00
- —0.100009E 106 0.459805E-+-02 14
16 10.974 42.685 15744. ~—0.113928E+-06 81.17
275.67 0.28 —0.923%E +09 0.1158E-+-00
—0.113873E4-06 0.262568E-1-02 14
27294 Q.77 —0.0785E-+-00 0.1316E-+-00
—0.113984E4-06 0.298132E+02 14

Quantities are:

Ist line: ordinal number, E;, G(E;), elapsed time, sample weight, degree of conversion.

2nd line: T, 6(7), 1, 6(r1).

3rd line: wi, 8{w1), number of “good™ data points in plateau 1.

4th line: Tz, 6(T2), rz, 6(ra).
“5th line: wa, 6(we), number of “good” points in plateau 2.

lines 1 through 3 repeat for each activation energy. )

Energics in keal mole-1, time in seconds, sample weights in sV, temperatures in °C, rates in £V sec™I;
20 1V corresponds to 1 ug.

output of the program, this information is intended only as a guide. The results should
be examined critically before the average values are quoted). A summary file con-
taining the pertinent information for each experiment is written on a flexible disc. The
summary file for the polystyrene oxidation is shown in Table 8. Note that some
instabilities in the experiment resulted in large errors in activation energies 3, 4 and 10.
The sample was used up during the determination of activation energy 16.

TEST OF POLYNOMIAL FITS TO WEIGHT-LOSS DATA

Now that we have given an example of the procedure, we turn our attention to
choosing the appropriate polynomial form to fit to weight-loss data and to the
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TABLE 9

DERIVATIVES FROM POLYNOMIAL FITTED TO WEIGHT-LOSS/TIME CURVE

no Xz D; ' Dy K} Dg Deo D Curve

1 29 2.09 2.09 0.01 2.09 2.09

2 17 —0.07 0.07 22 —0.12 0.12 —,
4 106 —0.13 0.13 4.3 —0.61 0.61 —
1,2 16 216 —2.03 0.02 —2.21 —1.08 —~— b
1,3 31 —2.11 —2.11 0.09 —2.14 —2.14 — T~
1.4 - 18 —2.22 —1.97 0.05 —2.70 —1.49 /—/‘
1.2,3 18 —2.18 —204 0.07 —2.26 —2.03

1,2,4 18 —2.14 - 2.05 0.2 —2.04 —2.15 T
1,3,4 20 —224 —1.98 0.08 —2.75 —1.54 —
2.3,4 10° —7.78 —7.68 7.7 —22 —22 —_—
1,2,3,4 20 —2.15 —2.06 0.20 —2.08 —220 —

& Weight (W) = a + X; g™, where ¢t = time.

b Preferred polynomial. .
D; = dw/dt at beginning of data block; Ix = dw/dr at end of data block; s = computed standard
deviation of Dy, Dy; De1 == value after extrapolation to 200 sec before data block; Dez — vaiue
after extrapolation to 200 sec after data block; .D curve = approximate shape of dwfdz vs. time.

accuracy with which such a fitted polynomial can be differentiated and extrapolated to
‘obtain useful results. Several polynomials were fitted to a block of weight-loss data
taken from the middle of a typical experimental run. The results are given in Table 9.
The coefficients of the trial polynomials, given under the column #, ranged between
1 and 4. On the basis of x?, the fit is best for the second-degree polynomial w = a +
bt + ct?, where w = sample weight and ¢ = time. The values under the headings D,
and D¢ in Table 9 are the derivatives obtained from substituting the times correspond-
ing to the initial and final data in the block; they are to be considered as the earliest
and latest ““directly observed™ values of the rate of weight loss. The extrapolated
values are given in the columns D, for the extrapolation back in time and D,, for the
extrapolation forward in time. Because the derivative changed only slowly with time,
- the extrapolated values should be fairly near the initial and final values.

Several polynomials are immediately seen to be inappropriate because of either no
change in the derivative with time, too much change, or nonsensical change, as shown
by the overall curve of the trend of the derivative with time in Table 9 (given under the
heading *‘D curve”). The trend should gradually decrease in a smooth fashion with
time. There is little to choose between the fit of second- and third-degree polynomials,
but the coefficient of #* in the third-degree polynomial was only one-third of its
_ estimated standard deviation, and thus the second-degree polynomial is the poly-
nomial of choice. The first-degree polynomial requires a constant derivative and is
obviously inappropriate. The column headed “s™ in Table 9 is the estimate of the
standard deviation of the extrapolated derivatives. Because the time origin was placed
in the middle of the data block, both extrapolated derivatives have the same standard
‘deviation. The estimate of the standard deviation is apparently a less reliable estimate
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of the appropriateness of the fit of the polynomial to the data than is the %2 value,
because s for the first-degree polynomial is the lowest value of all.

These and other resuits show that a second-degree polynomial is generally
appropriate for the small sections of the weight-loss curve which we must fit. We now
turn our attention to the closeness of the extrapolated derivatives to the values which
would have been observed had the data block been part of a larger isothermal
plateau. At first precisely this approach was tried. Parts of long isothermal plateaus
were fitted with a polynomial and the results were extrapolated out to other regions
where the derivatives were compared with derivatives calculated from polynomials
fitted to blocks of data which were centered about the extrapolation points. Un-
fortunately, the whole cumbersome exercise was marred by using data which turned
out to have too low a rate of weight loss (see below). It was then decided that a more
useful procedure would be to use the usual factor-jump program and procedure
except that the program would be changed slightly so that it would be unaware that
the temperature was actually not being changed (i-e., a test for nonsensical conditions -
was removed). Thus the two derivatives and sample weights calculated in the determi-

TABLE 10

EXPERIMENTAL TEST OF DERIVATIVE AND WEIGHT ESTIMATION FROM EXTRAPOLATION OF SECOND-DEGREE
POLYNOMIAL® ’ )

A Derivative results Weight results
Reacted AD b &(D) 100 ADID ADi6(D) AW jw| Grw) AwlG(w)
9.0 —0.39 19 0.39 —2.0 - —1.0 208 385985 76 2.7
11,8 —0.25 23 0.42 —1.1 —0.6 60 369489 82 0.7
15.0 0.73 27 0.49 2.7 1.5 —117 350282 96 —1.2
18.5 : 1.01 29 0.43 3.4 23 --35 328871 a5 —04
22.4 0.17 32 0.33 0.5 0.5 ~0f- 305776 64 —14
264 —0.48 32 0.30 —1.5 —1.6 . 98 281580 59 1.6
30.6 —0.45 34 0.29 —1.3 —1.5 —176 256336 58 —3.0
34.9 0.19 33 0.36 0.6 0.5 193 230417 sl 2.7
39.3 Q.65 35 0.35 1.9 1.8 —72 204345 71 —1.0
52.3 0.32 33 0.29 c.9 1.1 —156 126310 56 —328
564 —0.65 32 0.29 —2.0 —2.2 —13 101856 57 —0.2
60.3 —-—0.57 30 0.30 —1.9 -—1.9 14 78261 58 0.2
64.0 —0.24 29 0.21 —0.8 —1.1 -—38 55712 40 —0.9
67.6 —0.32 27 0.16 —1.2 —2.1 34 34465 29 1.1
71.0 0.16 25 0.14 0.6 1.1 76 14294 27 2.7
74.1 —0.62 24 0.17 —2.5 —3.5 103 4408 35 29
771 —0.37 21 0.21 —1.7 —17 —190 22526 46 —4.1
79.8 —0.40 20 0.18 —0.2 —0.2 36 39021 35 1.0
82.2 —0.40 17 0.16 —0.2 -0.3 —11 53225 31 —0.4
84.3 0.59 16 0.13 3.7 4.6 —22 ' 66065 25 —0.9
86.3 0.76 14 0.14 54 5.3 128 77489 28 —4.6
87.9 0.57 12 0.19 4.4 3.1 B2 87578 37 22
93.6 0.75 22 0.16 34 4.8 —83 121716 31 —2.7

3 Data from degradation of polystyrene in vacuum.
w = sample weight in £V (20 uV = 1 ug); D = rate of weight loss in £V sec™3; 4D = h — Dg;
D = (D1 + D2)/2; & — estimated value of 5.
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nation of the activation energy should be directly comparable. Further, the procedure
should provide an easily made general check on whether a particular material would
be suitable for factor-jump experiments.
Table 10 shows the results of a test of derivative estimation using some results
obtained for the degradation of polystyrene in < I mm air. The estimation of the
derivative and sample weights is satisfactory. The two equivalent estimates of the
weight agree within 100 gV (~ 5 ug) on the average (i.e., in the Aw column). The two
equivalent estimates for each derivative agree within 0.5 pV sec™! on the average
(see the AD column). The agreement appears to be more or less constant regardless
of the magnitude of the derivative. The data were measured above a minimum rate of
“weight loss of 10 yV sec™ 1. The error in the derivatives may be estimated as half the
spread of the derivatives themselves. On a percentage basis, this is half the value given
in column 100 AD/D and thus ranges from < ~ 1 to ~2.5% . The effect of error in the
derivative can be estimated from Table 12. (The rationale for Table 12 will be given
in the following section). An error of 0.2 in a rate of 11 uV sec™?! for a rate ratio of
(say) 4 would give an error of <0.5 kcal mole™! in an individual estimation of the
activation energy. This would be a highly satisfactory result given the facts that
- activation energies are often quoted to +5 kcal mole™ ! and that our estimated standard
deviation of the average value contains a factor of \/1/N. Our conclusion is that a
second-degree polynomial can be fitted to the trend of sample weight with time in the
factor-jump method and this polynomial can be extrapolated to give satisfactory
estimates of the first derivative, i.e., the rate of weight loss with respect to time, for
use in the calculation of an activation energy.

TEMPERATURE POLYNOMIAL

The temperature-time behavior is ideally linear and independent of time, i.e.,
the temperature should be constant. In practice there is 2 complex damped oscillation
approach to equilibrium. We have recognized the slight tendency of the temperature
to attain equilibrium only slowly by fitting its trend with time by a first-degree
polynomial. Generally, higher coefficients than first are not statistically significant and
confer instability rather than improve the precision.

POLYNOMIALS FOR OTHER FACTORS

Generally the remaining factors, the pressure and flow rates, are not changed
during the run but are instead held at constant levels. Thus it is appropriate to fit them
with a zero-order polynomial, i.e., to a constant value.

.ESTIMATION OF MINIMUM RATE OF WEIGHT LOSS

Runs in which the sample¢ was exhausted and other runs carried out with an
empty sample pan (and with appropriately initialized parameters so that the run



105

TABLE 11
MINIMUM RATE OF WEIGHT LO5S TO OVERCOME INSTRUMENTAL DRIFT

(Assuming instrumental drift = 0.6 ¢V sec™1)

E® rifrab Minimum rate (nV sec™t) for allowed Actual error in E (kcal mole1)
(kcal ervor in E of :
mole=1) 4% 3% 2% 15% 4% 3% 2% 15%
15 1.5 12.5 16 24 >30 . 0.6 0.5 0.3 0.2
25 2 11 14 21 29 1 0.8 0.5 = 04
33 2.5 9.5 13 19 26 1.3 1.0 0.7 0.5
40 3 -9 12 18 24 1.6 1.2 0.8 0.6
46 3.5 8.5 11 17 23 1.8 i4 09 0.7
51 4 8 10.7 16 21.5 20 1.5 1.0 0.8
55 4.5 7.5 10 "15.5 20.5 22 1.7 1.1 0.8
59 5 7.5 9.7 15 19.7 24 1.8 - 1.2 0.9

s When rifra values from second column, 71 ~ T2 = 250°C and AT = 15°C are substituted in
eqn. (1).
b Ratio of rates.

would not be ended by the program) showed apparent rates of weight loss of 0.02 to
0.6 1V sec™ 1. We took 8 = 0.6 uV sec™ ! as the maximum contribution of the appara-
tus to the apparent rate of weight loss. To determine the minimum rate of weight loss
to impose on the sample so that this contribution from the apparatus could be
considered insignificant, we went through the following exercise. Adding J to the
rates in eqn. (1), we obtain egn. (3) as stated earlier. (The quantity  was added for
convenience; the effect would be maximized by adding ¢ in the numerator and
subtracting it in the denominator).

The percentage change in £; can then be estimated from In{r,/r;)/In(r; + 3/
r, + 6). A suitable program was easily written in BASIC (15 lines). The value of r,
‘ranged from 10 to 90 in increments of 10; that of r, ranged from 1 to 30 in increments
of 1. Results corresponding to ratios of r,/r; ranging from 1.5 to 5 are summarized in
Table 11. These values correspond to ratios expected for £ values ranging from 15 to
60 keal mole=! for T, ~ T, = 250°C and AT values of ~15°C. Thus, a minimum
rate of 12.5 uV sec™ ! should measure all activation energies less than 60 kcal mole™ !
to 4%, and will measure activation energies less than 35 kcal mole™* to 377 (this
includes most oxidative reactions). To the extent that many of the rates will be above
the minimum, one can say that instrumental effects of this kind will in practice
produce errors of less than 37 in the individual measured activation energies.

However, the inclusion of o(E) in the Arrhenius equation

k — f(C) Aé—[E+a(E}]!RT
: — f(C)I:A e—ElRT][e—a'(.E)IRT]

— K’ e o(EVRT

Q)
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TABLE 12

INTERPLAY OF MENIMUM RATE (V) INSTRUMENTAL DRIFT () AND ERROR IN ACTIVATION ENERGY (E)

Error (kcal rmale-1)

D "E® Fifra a-0.35 0.5-1 I-I.5 1.5-2 2-25 2.5-3
r
0.6 IS 1.5 i5 7 5 4 3 2
25 2 >20 i1 7 6 4 B
i3 2.5 ] >20 i3 9 7 5 4
40 3 >20 15 10 7 6 s
46 3.5 >20 16 11 8 6 5
51 4 >20 17 11 8 7 6
55 4.5 >20 17 11 9 7 6
59 5 > 20 18 12 9 7 6
0.5 1.5 12 G - 4 3 —_ 2
2 18 9 6 5 4 3
2.5 >20 11 7 6 5 4
3 - =20 12 ] 6 5 4
3.5 =20 13 9 .7 5 —
4 >20 14 9 7 6 5
4.5 >20 14 10 7 6 5
5 >20 15 10 7 G 5
0.4 1.5 10 5 3 —_ 2 —_—
" 2 i5 7 5 4 3 —
2.5 18 9 6 5. 4 3
3 20 10 7 5 4 3
3.5 >20 11 7 5 4 —
4 >20 11 8 6 5 4
4.5 >20 iz 5 6 5 4
5 =20 12 8 6 5 4
0.3 1.5 8 4 3 2 — 1
: 2 11 6 4 3 2 —
2.5 13 7 5 4 3 2
3 15 8 5 4 -3 —
335 16 8 [ 4 3 —_—
4 17 - 9 3] 5 _— 3
4.5 17 9 6 4 4 3
5 18 9 6 5 4 3
02 1.5 5 3 2 —_— i —
2 8 4 3 2 — -
2.5 9 5 3 —_ 2 —
3 10 5 4 3 2 —
3.5 11 6 4 3 2 —
4 11 6 4 3 — 2
45 12 6 4 3 — 2
5 12 6 4 3 _— 2

* From eqn. (1) given corresponding value of rifr: and assuming 71 ~ F2 = 250°C, AT = 15 °C.
-® No integer value of rate fits these windows,
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shows ihat errors in E enter into the apparent rate constant & as a multiplicative
factor applied to the real rate constant, k'. Thus, a more appropriate specification of
the minimum rate is in terms of that required to keep the error in the activation energy
below a given threshold. Absolute errors in £ in kcal mole™ ! are given at the right
side of Table 11. Absolute errors in E are also given in Table 12, where, for given
amounts of instrumental ““drift’”, D, and various rate ratios r,/r,, the minimum rate
is given in columns corresponding to the expected error in activation energy in kcal
mole ™. Not until the “drift” is as low as 0.2-0.3 pV sec™! is there much hope of
measuring an individual activation energy to 0.5 kcal mole™ ! or better. For the worst
case, i.e., conditions of 2 = 0.6 pV sec™’ and a minimum rate of 12.5 uV sec™ !, the
individual activation energies will only be measured to 1-1.5 kcal mole™ ! or better.
Since many rates will be above the minimum (perhaps > 15 ¢V sec™!) and often the
apparent drift will be below the maximum one can reasonably expect many activation
energies to be measured to less than I kcal mole™ . Table 12 also shows the important
effect of reducing instrumental ““drift”. For a maximum ““drift’”” of 0.2 uV sec™ £, all
activation energies could be measured to better than 0.5 kcal.

PRECISION NEEDED IN ACTIVATION ENERGY

When one considers that physical changes in the sample (such as the formation
of crusts or even just the reduction in sample size as the sample loses weight) can make
processes such as diffusion change in importance and influence the observed activation
energy by several kcal mole™?, activation energies measured to 0.5 to 1 kcal mole™?
are probably sufficient for the purpose of following changes in dominant mechanism.

When the goal is to estimate service life from the results of a test accelerated by
temperature, the criterion changes drastically. The activation energy is the parameter
which measures the temperature-dependence of a reaction. The rationale of estimating
the effect of error in the activation energy on extrapolations of accelerated tests is
given below. Given the Arrhenius equation and the supposition that the same processes
are rate limiting at both temperatures, we can write

T(Tz) — (ET@MTIRT Tz

r(Ty)

EAT/RT Tz oadT/RT, T2 . : (5)

=&
as the correspondence between the rates at temperatures 7, and 75, with AT = T, —
T,. The term eE4T/RT1Tz jn eqn. (5) is the scaling factor, and the term e™T/&T1Tz may
be interpreted as a term which introduces error into the scaled rate. Table 13 shows
the percentage error obtained in the scaled rate when rates measured at 100, 200, 300,
400, and 500°C are scaled to 25°C assuming various errors in the activation energy.
The greater the temperature difference between service life and accelerated test, the
smaller the error in the activation energy must be for a given error in scaled rate. In
our example of the oxidation of polystyrene at various temperatures between 225 and
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TABLE 13
EFFECT OF ERROR 1N ACTIVATION ENERGY ON ACCELERATED RATE TESTS

. (Service temp. = 25°C)

% Error Error in aetivation energy (keal mole=1)
inrafe® Test temp. (°C) 100 200 300 400 500
| B - 0.03 0.02 0.01 0.01 0.01
5 0.15 0.08 0.06 0.05 0.05
i0 0.28 0.15 0.12 0.10 0.09
25 ~ 0.66 036 0.28 024 0.22
50 1.20 0.65 0.50 0.43 0.39
100 ~ 2.05 1.k1 086 0.74 0.67
250 3.71 2.01 1.56 1.34 1.22

8 Calculated at service temperature from rate observed at test temperature by means of
(=)
r(Ty)

- where the error factor in the rate is e4T/R7T Ty and o is the error in the activation energy.

= ¢EATIRT Ty e0AT/RTy T,

275°C, the final averaged activation energy is 21.5 -- 0.2 kcal mole™ 1, determined at,
let us say, 250°C. From Tabie 13, we can estimate by interpolation that an error of
~ 139 would be introduced into the calculated rate if the rates observed at ~250°C
were scaled to room temperature. This may seem adequate; however, we should recall
that a2 95 % confidence level requires the use of ~2¢, and thus we should interpolate
on 2(0.2) = 0.4 kcal mole™? error in Table 13. This gives an error of ~357] in the
scaled rate. Whether or not this would be a usefully precise rate is beyond the scope
of this paper. _

| The above analysis suggests that the extrapolation to lower temperatures of
results obtained in accelerated tests at higher temperatures requires activation energies
which are known to great accuracy, i.e., some cases may require that the activation
energy be known to within 0.1 keal mole™ ! or better. Apparently such high precision
will be rarely attained by the factor-jump method, even by considering average values
ffom many runs, with the factor of /N in the denominator of the estimated standard
deviation. To the extent that sample processes themselves cloud the issue, this precision
may be unattainable in general. In cases where such precision is required, one must
therefore stress extremely modest temperature acceleration. If the rate processes are
not sufficiently fast under those conditions one must then look to analysis of rates of
production of minute amounts of products or precursors as an alternate method of
lifetime prediction. : '

EXAMPLES OF FACTOR-JUMP DETERMINATIONS OF ACTIVATION ENERGY

Given the Nmitation of the usefulness of the activation energy as discussed
above, to what other uses can the results of the factor-jump process be applied?
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Fig. 1. Histograms of activation energies obtained in the oxidation of polystyrene in various
atmospheres flowing at 500 scc min~.

Several examples will now be given. The first is a crude examination of the effect of
oxygen content in the experimental atmosphere on the apparent activation energy of
oxidising polystyrene. Figure 1 shows histograms plotted from runs of polystyrene in
various N,/Q, atmospheres. The total flow rates and pressures were the same in all
cases. The relative placings of the histograms clearly show an increase in apparent
activation energy with decrease in O, content of the atmosphere. This reflects an
increase in importance of the nonoxidative degradation mechanism (£ ~45 kcal
-mole~!, Dickens, unpublished) as the O, content of the flowing atmosphere is
decreased. The average activation energies supplied in Fig. 1 were calculated over the
A values tabulated in Fig. 1 with D values of the original set being discarded for
reasons beyond the scope of this paper. These energies are intended as a guide only.

Figure 2 shows the trend with extent of reaction of the activation energy of the
in-vacuo degradation of a polymethylmethacrylate molding powder, i.e. PMMA
stabilized by being polymerized with a few percent methyl acrylate. In this experi-
ment, the activation energy rose from ~ 33 kcal mole™ 1 tg ~4] kcal mole™!. This
result is given to illustrate a trend in activation energy and should not be quoted as
definitive. We will discuss the degradation of PMMA in a later paper.
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Fig. 2. Plot of activation energy vs. extent of reaction for vacuum degradation of polymethyl
methacrylate molding powder (stablhzed by cepolymerization with acrylate).
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Fig. 3. Plot of activation energies versus extent of reaction for vacuum degradation of (a) methylene
diphenyl diisocyanate-polyethylene adipate diol-butane diol polyurethane, and (b) polycthylene

adipate diol alone, MW = 1000. —, Small cubes; ———, evaporated film on pan; —.—, evaporated
film on gauge.

Figure 3 shows a possible use in the interpretation of the sequence of events
during the degradation in vacuum of a methylene diphenyl diisocyanate-polyethylene
adipate diol-butane diol polyurethane. The runs produced extensive char from the
sample; the best method of sample presentation may be that where a solution of the
polymer is evaporated directly in the sample pan. This tends to produce an extensive

thin film. Three methods of sample presentation were used in the experiments sum-
- marized 1n Fig. 3(a). However, the essential features are common to all three curves.
The activation energy data indicate that the initial process terminates at between 30
to 40%; weight loss and the residue decomposes further to produce a final residue
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Fig. 4. Plot of activation energy versus extent of reaction for vacuum degradation of (2) methyiene
diphenyl diisocyanate-polytetramethylene oxide diol-butane diol polyurethane, and (b} polytetra-
methylene oxide diol alone, MW = 10{0.

(seen at the end of the experiment to be a char) involatile in vacuum below 500°C and
amounting to about 30% of the initial weight. Comparison of Fig. 3(a) and (b)
indicates that the plateau at 45-70%, conversion arises from the decomposition of
polyester. Thus the early stages may be inferred to be the loss of methylene diphenyl
diisocyonate (MDI) from the sample, apparently with an initial activation energy of
40-45 kcal mole~ . However, the parameter-jump method of thermogravimetry as
~ currently implemented consists of a series of temperature plateaus and as such is not
suited to examine initials rates (i.e., of <5% extent to reaction). The fact that the
activation energy of the first process thus changes from 40 kcal mole™! to 24-31
~ kcal mole™ 1 depending on the sample, suggests increased importance of diffusion
(~ 15 kcal mole™ ') as the decomposition progresses. A reasonable explanation is
that a crust formed on the samples but later cracked as the degradation proceeded.
The activation energies calculated during the in-vacuo degradation of three
samples of a methylene diphenyl diisocyanate-polytetramethylene oxide diol-butane
diol polyurethane are shown in Fig. 4. The gaps in the curves indicate regions where
the temperature had to be increased (under program control) in several steps to force
the rate-of-weight loss of the sample above minimum allowed limits. This probably
implies a change in process, because final inspections showed the samples were
not excessively charred and thus diffusion processes would not be expected to play
an increasingly important role as the degradation proceeded. Comparison of Fig.
4(a) with (b) shows that degradation of polyether alone is easily discerned not to be a
dominant process in the in-vacuo degradation of the MDI/polyether polyurethanes.
However, it is probable that MDI boils out of polyether-based polyurethanes just as
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it does from polyester-based polyurethanes. Figure 4(a) suggests that degradation
of polyether also occurs during the period when MDI is lost. Otherwise, after consider-
able or complete loss of MDI, the activation energy would fall to the 26 kcal mole™1
characteristic of polyether degradation. There is some movement in this direction but
the lowest activation energy to be measured at sufficiently large rates of weight loss to
be realistic is only 35 kcal mole ™!, which is not much below the starting value of ~40
kcal mole™ *. At 50% reaction, the process changes. We infer this marks the complete
loss of MDI and that the later degradation, corresponding roughly to the region
70-90% in Fig. 4(b), is that of the remaining polyether.

The activation energy vs. extent of reaction plots provide useful information on
the effects of sample geometry (Fig. 3a), the dominant processes (from a comparison
of Fig. 3a and b) and the extent over which these processes occur when they are
separated (Fig. 3a) and when they are not (Fig. 4a). The conclusions help to charac-
terize polymer degradations but the inferred nature of the dominant processes must
later be confirmed by other techniques, including product analysis. Routine applica-
tion of the method to all samples is not currently feasible. When heated in vacuo,
‘ some samples such as the toluene-diisocyanate-polymethylene glycol-butane diol
polyurethane form a bubbly viscous liquid which imparts small shocks to the balance
mechanism as the bubbles burst and loses weight in steps as the gaseous content of
the bubbles e€scapes. ‘The way to handle this situation has not yet been resolved. It is
possible that the sample will behave simply under different conditions such as atmos-
pheres of N,, O,, H,O, etc., and mixtures thereof.

CONCLUDING REMARKS ON THE FACTOR-JUMP METHOD

The factor-jump method of thermogravimeitry has the disadvantage of requiring

the estimation of derivatives. This is a notoriously unstable computational procedure.

Nonetheless, the work described here shows that in many cases the derivative cannot

only be estimated satisfactorily, but can also be extrapolated satisfactorily. Thus the
method is computationally feasible.

There are several advantages of the factor-jump method.

(1) Knowledge of the kinetic form of the degradation is not necessary. The
only requirement is that the isothermal behavior of the sample be representable over
‘short ranges by a low-degree polynomial. Thus one may study polymer degradations
with ease even though the order of reaction construct is-not appropriate for degrading
polymers. Probably some inference of the kinetic form could be made using the data
from the various isothermal sections of the experiment. Up to now, our philosophy
has been to put the determination of the activation energy on a firm footing.

(2) The activation energy can be examined over a large extent of reaction
using only a narrow temperature range and under the condition of an essentially
constant rate of weight loss (within a factor of 2 or 3).

(3) The procedurc uses only one sample to estimate a series of activation
energies. Comparison of two samples with disparate thermal histories is thus avoided,
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and there is no reliance on determining the initial and final sample weights, the
extents of reaction and so on. ,

(4) The single sample is only slightly perturbed by the changes in conditions as
the experiment proceeds and soon “re-equilibrates”.

(5) Additional advantages in our particular experimental set-up are the
control of the procedure by the computer, the real-time processing of the data to
_obtain final results, estimates of the errors involved and the lack of need of an operator
once the run is started. :

(6) At the moment the technique has not progressed to the stage where a new
material can be characterized every day. Runs in ““vacuum’ (25-150 pm Hg of air)
often show erratic results in the form of scatter in the measured activation energies. It
is not presently known whether such erratic results are inherent in the polymer
degradations themselves or are caused by the effects of the traces of oxygen present.
Efforts are underway to improve the vacuum in the apparatus.

(7) For any resuits to be considered trustworthy, they must be reproducible
‘and must survive comparison with results obtained by different techniques. To
examine the reproducibility, a polymer should be subjected to several factor-jump
experiments.
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